Click here to sign in with or
A little fluorine turns an insulating ceramic known as white graphene into a wide-bandgap semiconductor with magnetic properties. Rice University scientists said that could make the unique material suitable for electronics in extreme environments.
A proof-of-concept paper from Rice researchers demonstrates a way to turn two-dimensional hexagonal boron nitride (h-BN) - aka white graphene - from an insulator to a semiconductor. The magnetism, they said, is an unexpected bonus.
Because the atomically thin material is an exceptional conductor of heat, the researchers suggested it may be useful for electronics in high-temperature applications, perhaps even as magnetic memory devices.
The discovery appears this week in Science Advances.
"Boron nitride is a stable insulator and commercially very useful as a protective coating, even in cosmetics, because it absorbs ultraviolet light," said Rice materials scientist Pulickel Ajayan, whose lab led the study. "There has been a lot of effort to try to modify its electronic structure, but we didn't think it could become both a semiconductor and a magnetic material.
"So this is something quite different; nobody has seen this kind of behavior in boron nitride before," he said.
The researchers found that adding fluorine to h-BN introduced defects into its atomic matrix that reduced the bandgap enough to make it a semiconductor. The bandgap determines the electrical conductivity of a material.
"We saw that the gap decreases at about 5 percent fluorination," said Rice postdoctoral researcher and co-author Chandra Sekhar Tiwary. The gap gets smaller with additional fluorination, but only to a point. "Controlling the precise fluorination is something we need to work on. We can get ranges but we don't have perfect control yet. Because the material is atomically thin, one atom less or more changes quite a bit.
"In the next set of experiments, we want to learn to tune it precisely, atom by atom," he said.
They determined that tension applied by invading fluorine atoms altered the "spin" of electrons in the nitrogen atoms and affected their magnetic moments, the ghostly quality that determines how an atom will respond to a magnetic field like an invisible, nanoscale compass.
"We see angle-oriented spins, which are very unconventional for 2-D materials," said Rice graduate student and lead author Sruthi Radhakrishnan. Rather than aligning to form ferromagnets or canceling each other out, the spins are randomly angled, giving the flat material random pockets of net magnetism. These ferromagnet or anti-ferromagnet pockets can exist in the same swatch of h-BN, which makes them "frustrated magnets" with competing domains.
The researchers said their simple, scalable method can potentially be applied to other 2-D materials. "Making new materials through nanoengineering is exactly what our group is about," Ajayan said.
Co-authors of the paper are graduate students Carlos de los Reyes and Zehua Jin, chemistry lecturer Lawrence Alemany, postdoctoral researcher Vidya Kochat and Angel Martí, an associate professor of chemistry, of bioengineering and of materials science and nanoengineering, all of Rice; Valery Khabashesku of Rice and the Baker Hughes Center for Technology Innovation, Houston; Parambath Sudeep of Rice and the University of Toronto; Deya Das, Atanu Samanta and Rice alumnus Abhishek Singh of the Indian Institute of Science, Bangalore; Liangzi Deng and Ching-Wu Chu of the University of Houston; Thomas Weldeghiorghis of Louisiana State University and Ajit Roy of the Air Force Research Laboratories at Wright-Patterson Air Force Base.
Ajayan is chair of Rice's Department of Materials Science and NanoEngineering, the Benjamin M. and Mary Greenwood Anderson Professor in Engineering and a professor of chemistry. Explore further Graphene foam gets big and tough: Nanotube-reinforced material can be shaped, is highly conductive More information: "Fluorinated h-BN as a magnetic semiconductor" Science Advances (2017). DOI: 10.1126/sciadv.1700842 , advances.sciencemag.org/content/3/7/e1700842 Journal information: Science Advances
Provided by Rice University Citation: Fluorine grants white graphene new powers: Researchers turn common insulator into a magnetic semiconductor (2017, July 14) retrieved 16 September 2022 from https://phys.org/news/2017-07-fluorine-grants-white-graphene-powers.html This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.More from Materials and Chemical Engineering
Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form. For general feedback, use the public comments section below (please adhere to guidelines).
Please select the most appropriate category to facilitate processing of your request
Thank you for taking time to provide your feedback to the editors.
Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.
Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Phys.org in any form.
Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.
Medical research advances and health news
The latest engineering, electronics and technology advances
The most comprehensive sci-tech news coverage on the web
This site uses cookies to assist with navigation, analyse your use of our services, collect data for ads personalisation and provide content from third parties. By using our site, you acknowledge that you have read and understand our Privacy Policy and Terms of Use.